Appendix A: Channel cross-sections

This appendix reproduces the full set of channel cross-section profiles introduced in Chapter 4. The plots illustrate the complexity of channel form changes produced by the downstream staging of bed material over time. All of the extracted profiles are coincident with the location of the 1999 sounding lines, so plots for that date preserve actual bed elevations more accurately than for the earlier dates (which necessarily include greater interpolation). The plots reveal the magnitude of vertical and lateral instability that occurs along the river. The greatest changes are typically found within wandering reaches, and are especially large where an avulsion has occurred. Upstream of Agassiz-Rosedale (cross-sections numbered 104 or larger), the comparison is limited to the 1952 and 1999 surveys only. It should be realized that spatial limitations of the 1952 soundings preclude a completely reliable estimate of the actual channel bed along the complete width of some profiles.

Reach 1

XS2

Figure A-2. Channel cross-section profiles for 1952, 1984 and 1999, reaches 1 and 2. The reference line represents the water level at bankfull discharge.

Reach 3
Reach 4

Figure A-3. Channel cross-section profiles for 1952, 1984 and 1999, reaches 3 and 4.

Reach 5

XS 38

XS 40

XS 42

Figure A-4. Channel cross-section profiles for 1952, 1984 and 1999, reach 5.

Reach 6

Figure A-5. Channel cross-section profiles for 1952, 1984 and 1999, reach 6.

Reach 7

Figure A-6. Channel cross-section profiles for 1952, 1984 and 1999, reach 7.

Reach 8

Figure A-7. Channel cross-section profiles for 1952, 1984 and 1999, reach 8.

Reach 9

Figure A-8. Channel cross-section profiles for 1952, 1984 and 1999, reach 9.

Reach 10

Figure A-9. Channel cross-section profiles for 1952 and 1999, reach 10.

Reach 11

Figure A-10. Channel cross-section profiles for 1952 and 1999, reach 11.

Reach 12

Reach 13

XS 148

Figure A-11. Channel cross-section profiles for 1952 and 1999, reaches 12 and 13.

Appendix B: Calculating the gravel budget

This appendix describes in detail the procedures used to convert surfaces of differences to coarse sand and gravel volumes for individual computing cells. These computing steps are used to derive the period sediment budget esimates presented in Chapter 5 and to illustrate patterns of aggradation and degradation along the entire gravel reach. Calculations are provided for two $1-\mathrm{km}$ computing cells, to contrast a simple case (minimal bank and island changes, no gravel removals) with a complex case (includes bank and island changes, gravel removals). In the simple case, volumetric changes from the surfaces of difference are simply proportioned into sand and gravel fractions according to the location of the computing cell (see Fgure 5-4). In these cells, addition of the period sediment budgets very nearly produces the same result as the sediment budget derived from the direct surface of difference. In the complex case, the treatment of overbank wash material (which is not incorporated into sediment budget calculations) introduces a bias such that the period budgets and the direct budget do not necessarily add. Consequently, the unadjusted budget (gross volumetric changes) is the preferred figure for examing bed level changes within the gravel reach.

B. 1 Computation of unadjusted volumetric changes and bed level changes

The gravel budget requires information on the net difference between scour and fill of the channel bed, changes in storage along island and floodplain deposits and removals of gravel from each reach by dredging/mining. Volumetric changes between any two surveys were initially calculated in Arc/Info GIS using the command CUTFILL, which simply subtracts one cell value from another and writes this information to a third file. First, each topographic model was "clipped" to correspond with a polygon coverage known as a "replace" coverage which contains one of two numeric codes (0 or 1). The replace coverage serves as a mask which is used to replace interpolated elevations with a no-data value where the modeling is known to be weak or otherwise should not be included (because it is outside the region of interest: for example, lower Vedder Canal; several of the prominent sloughs).

The same mask was used for all 3 modeled surfaces to ensure that the same areas exactly are included or excluded from the computations. Since the 1984 survey covers a shorter reach of the river than the other two surveys, a separate mask was used to compare the 1952 and 1999 surveys upstream of Agassiz Bridge. Polygons that were classified as stable island and flood-plain surfaces on all dates were assigned the nodata value. This was done to ensure that the computing
areas for 1952-84, 1984-99 and 1952-99 are exacly the same, and that they correspond so far as possible with the region that has formed the active channel within the past 50 years. The comparison area from Mission to Agassiz is 55.4 million m^{2}. Upstream of Agassiz, the comparison area is 33.6 million m^{2}.

The next step was to use CUTFILL to compute the difference between surveys. This was done in $25 \times 25 \mathrm{~m}^{1}$ grid cells over the entire domain (the dimensions are comparable with the resolution of the surveys - see Chapter 5). Because the same coordinate system was used for all surveys, the grid cells correspond exactly from survey to survey and can be superimposed for intersurvey comparisons. There are 88,660 cells in the Mission-Agassiz reach, and an additional 53,735 cells upstream of Agassiz. Volumetric differences for 1952-84, 1984-99,1952-99 (Mission to Agassiz) and 1952-99 (Agassiz to Laidlaw) were then computed as the product of polygon area and interpolated change in elevation, and aggregated into new polygon coverages corresponding with the $1-\mathrm{km}$ computing cells along the river (as shown in Figure 5-1) and the data were exported to a spreadsheet. In the spreadsheet, the volumetric differences were divided by the area of cell in order to arrive at an estimate of the change in bed level. This determines simply that an individual computing cell was higher or lower in elevation, on average, at the end of one survey period compared with another, irrespective of whether the elevation change could be attributed to gravel, coarse sand or fine sand, or whether a portion of the change involved the addition to or loss of channel bank, which would change the currently active channel zone.

The results of these calculations are presented in Table B-9 as unadjusted bed level changes. Since no adjustments have been made to the observed volumetric differences they are consistent between periods, and they sum properly to the reported reach average when appropriately weighted by cell area.

B. 2 Computation of bed material changes and associated bed level changes

In this section, a detailed explanation is given of the procedures followed to arrive at the results reported in Tables B-5 to B-8, and summarized in the text (Tables B-1 to B-4).

[^0]The initial topographic models are the same ones used in the previous calculations. However, a procedure is now introduced to classify the $25 \times 25 \mathrm{~m}$ grid cells within the study reach. Each cell is classified according to the type of morphological change that occurred in the cell between successive surveys. These changes were determined from planimetric mapping for the years 1949, 1983 and 1999 from available air photography. The dates do not correspond exactly with the timing of the bathymetic surveys so small coding errors remain possible. Successive maps were overlaid (e.g. 1949 to 1983) and the grid cells were coded as one of 6 possible types of channel change transitions ${ }^{2}$ based on the interpreted channel maps, as follows:

1. channel scour/ fill (water, bar, bar-edge on both dates)
2. bank erosion (island or floodplain at earlier date; water or bar-edge at later date)
3. bank deposition (water or bar-edge at earlier date; island or floodplain at later date)
4. floodplain stripping (island or floodplain at earlier date; bar at later date)
5. floodplain recovery (bar at earlier date; island or floodplain at later date), and
6. stable island/ floodplain (island or floodplain on both dates)

These codes are mutually exclusive and they include all mapped polygons for each intersurvey comparison (i.e. every overlay polygon is classified as 1 of 6 transitions only and there are no unclassified overlay polygons remaining).

Polygons that were classified as stable island and floodplain surfaces between two dates were assigned the nodata value. This means that the computing areas vary between comparisons (48.9 million m^{2} in 1952-84; 46.1 million m^{2} in 1984-99; and 49.5 million m^{2} in 1952-99 in the Mission-Agassiz reach). The comparison area for the unadjusted difference calculations is larger (55.4 million m^{2}) since the area of stable island/ floodplain surfaces that was excluded from those calculations is smaller; that is, the stable area common to all 3 mapping dates is much smaller than the stable area between either the 1952-84, 1984-99 or 1952-99 periods. The 1952-99 comparison may seem surprising: it indicates that there are areas along the river (amounting to 10.7% of the total active area) that constituted island or floodplain in both 1952 and 1999, but changed within the intervening period.

[^1]At this point, the original elevation difference maps were overlaid with the channel change maps to produce a new summary coverage wherein each individual cell recording elevation change was additionally coded with a channel change (transition) attribute. Individual cells were sometimes divided into more than one smaller cell depending on mapping boundaries but each individual 'cell piece' was coded with only a single transition code. An additional database field, 'volume', was also added to the summary overlay coverage where volume was calculated as the product of the cell area and the average computed elevation difference. Volumes were subsequently summarized for each channel change transition type along each 1-km computing cell and the data were imported into a spreadsheet for further analysis. Those calculations followed individual components of the sediment budget, as allowed by the grid cell coding, and excluded from the calculations of the bed material budget some portions of the sediments eroded or deposited. The excluded sediments were fine sands and silts deposited on or removed from floodplain and island surfaces when they were eroded or deposited. This material is judged not to form part of the "bed material". The adjustment is the source of the apparent discrepancies in the bed elevation changes reported in Table B-9 under "bed level change from sediment budget".

It is worth emphasis that, although we have preferred the available sum of 1952-1984 and 1984-1999 sediment budgets for estimating the total sediment budget in the Agassiz-Mission reach, the appropriate results for estimating bed level change remain the direct 1952-1999 survey differences. The actual surveys are not biased by coincident sediment scour/fill. In what follows, it must be realised that the selection of input data for summary presentations differs between the preferred estimates of the sediment budget, and those that lead to the estimates of bed level changes.

B. 3 Some example calculations

Upon close examination of the different columns presented in Table B-9, it becomes obvious that the bed-level changes reported for some reaches do not change appreciably between the two calculations, while for others, the differences appear to be surprisingly large. In order to make the procedures more transparent, some sample calculations will be given for selected computing cells along the river. We give one example of a "simple cell", one in which there were negligible bankline changes so that the computing areas were the same for all inter-survey comparisons, and in which exchange of wash material was, accordingly, small. The summary numbers in both bed elevation change exercises should be consistent and very similar to each other.

We give a second example of a "complex cell", one in which significant bankline changes have occurred so that floodplain/island areas have been created or destroyed, or there has been significant floodplain stripping and/or recovery. In this case, significant wash material deposits will have been present, leading to systematic differences in the sediment volume recorded between the unadjusted and bed material calculations, thence to different results. In the case of the bed material calculations, furthermore, results may not sum between periods because the observed wash material adjustments may differ amongst the periods due to compensating erosion and deposition.

B.3.1 Simple cell

We first review the calculations for a reach in which the computed bed-level changes remain essentially the same between the two analyses and, in addition, there has been no known sand and gravel removal. A suitable reach for this review is cell 2 , located near the downstream end of the study reach at Mission, where the volumetric and bed level changes are as reported in Table B-1. In this comparison, we compare the unadjusted bed level changes with bed level changes estimated from the sediment budget for the full period 1952-1999. (In the main report, the preferred sediment budget is based on an adjusted sum of the 1952-1984 and 1984-1999 budgets. Taking account of the sum procedure would complicate the comparison given here, but would not change the principles to be demonstrated.)

Table B-1. Volume and bed level changes in cell 2 . Negative values indicate degradation (erosion volume exceeds deposition volume).

Period	$1952-84$	$1984-99$	$1952-99$
unadjusted volume $\left(\mathrm{m}^{3}\right.$ bulk mea- sure - see Table B-9)	$\mathbf{- 2 4 8 , 2 0 6}$	$\mathbf{4 9 , 6 3 1}$	$\mathbf{- 1 9 9 , 8 4 6}$
unadjusted bed level change (m)	-0.50	0.10	-0.40
sediment budget $\left(\mathrm{m}^{3}\right.$ bulk mea- sure - see Table B5-B7	$-248,434$	48,847	$-206,728$
bed material level change (m)	-0.50	0.10	-0.41

In the sediment budget calculations the direct sum of the 1952-84 and 1984-99 bed material elevation changes $(-0.40 \mathrm{~m})$ does not equal the summary value for 1952-99 (-0.41 m) partly because the areas over which the individual period data are calculated are not exactly the same in each case. The sum does, however, correspond with the unadjusted result for 1952-1999.

Furthermore, the result for cell 2 based on the sum of component sediment budgets (Table B-8) is also -0.40 m .

To further review how these data were derived, we need to examine the raw summary data from the GIS. In the case of the unadjusted bed level changes, the volume results are simply the sum of the interpolated elevation differences recorded between two successive surveys in each grid cell (there are $\mathrm{n}=813$ grid cells in computing cell 2) multiplied by the area of a grid cell ($625 \mathrm{~m}^{2}$). The mean bed level change is, then, simply $\Delta V / A$, as given in equation (1).

In the case of Tables B5-7, the total volumes are based on additions of gravel and sand whose proportions are determined by the location within the channel, but also by the type of transition observed between the two survey dates. Raw (GIS-calculated) volumes for each transition type (sums over the number of grid cells tagged with the particular transition type code) are given in Table B-2. Differences between the bolded intersurvey period totals given in Tables B-1 and B-2 derive only from roundoff errors (due chiefly to transforming small elevation differences into large volumes via multiplication by large areas), and from the slightly different nodata areas.

The sediment budget tables (B5-7) are broken into different sections according to the summary treatment of the transitional changes. Values that are found in these tables are italicized in the following discussion for emphasis.

Table B-2. Volume changes (m^{3} bulk measure) in cell 2 by transition type

Transition	1	2	3	4	5	Total volume
$1952-84$	$-248,529$	$-3,888$	1,098	0	1,261	$\mathbf{- 2 5 0 , 0 5 8}$
$1984-99$	48,434	2,258	-884	0	0	$\mathbf{4 9 , 8 0 9}$
$1952-99$	$-212,425$	3,076	5,828	0	1,282	$\mathbf{- 2 0 2 , 2 3 9}$

The first major section of the tables summarizes the bed changes, which are based on the transition 1 (active channel scour/fill) volume. The volumetric calculations are straightforward in this case. This material is simply divided into channel gravel and channel sand according to the percentage of gravel in the bed and lower banks. All of this material is bed material and is counted in the total sand+gravel column at the end of the table.

The next major section of the table, bank changes, summarizes bank erosion and deposition (transitions 2 and 3). The calculations are considerably more complex because there is a 1-3 metre
layer of sands and silts on island and floodplain surfaces that must be removed, or estimates of bed material transfer rates will be inflated. McLean (1990) estimated bank erosion volumes by multiplying eroded areas by the thickness of the basal gravel layer as estimated from direct field measurement, though this depth had to be extrapolated when islands were completely eroded. Deposition thickness was estimated using similar procedures. These depths have now been estimated within the GIS by subtracting the volume of overbank (sand and silt) deposits from the total observed volumetric change under island and floodplain surfaces. Appropriate thicknesses of sand and silt were obtained from Figure 4-11. That figure was constructed by overlaying the channel map for 1999 with the 1999 survey to identify island/floodplain areas, then spatially averaging island/floodplain elevations for each reach and plotting them as a function of distance upstream from Mission. Separate exercises were conducted for old floodplain, recently established floodplain, and old bar tops. Best-fit exponential lines are shown to average scatter or anomalies that may be present due to insufficent elevation data (i.e. a young island polygon may have few or no spot heights).

It is assumed that the difference in elevation between old bar and young island surfaces represents the thickness of recent overbank deposition, estimated as 0.84 metres, or half the maximum observed depth since newly deposited island surfaces will be under various stages of construction at the time of observation. The difference between old bar and old islands, 3 metres on average, is taken to represent the thickness of eroded overbank deposits. (Our earlier sediment budget estimates adopted values of 1 m and 2 metres respectively, following McLean (1990)). In general, the deposition thickness is considerably less than the erosion thickness, a difference likely attributable to age (eroded sediments may be considerably older than deposited sediments where vertical accretion rates are limited). Boniface (1985) and McLean (1990) found an association between overbank thickness and the age of vegetation along island and floodplain surfaces on Fraser River. The thickness of overbank sands may require further confirmation through direct field sampling, though the sampling requirements over such a large area may be prohibitive. An alternative method would be to estimate the erosional and depositional age of island and floodplain deposits based upon the historic mapping that has been completed. Polygons of different ages could be overlaid with elevation data to test whether an age-thickness relation can be determined from existing data.

The conventions just described do not lead to a simple adjustment for erosion and deposition volumes. For example, removing 3 metres of sand from a polygon observed to be
eroded, multiplied by the erosional area, may result in a larger volume to be subtracted than the total eroded volume calculated by the GIS. In such cases, the total erosional volume observed is assigned to sand. Similar adjustments are made for transitions coded as stripping (island to bar) which is an erosional sediment transfer, and re-vegetation (bar to island) which is a depositional sediment transfer. (These two transitions were ignored in previous sediment budget estimates.) Where the product of the stripping area and the 3 m overbank thickness was found to be smaller than the stripping volume recorded by the GIS, gravel was also assumed to have been eroded. Similarly, measured revegetation volumes in excess of 0.84 m times the revegated area were assumed to have resulted from additional gravel deposition.

Accordingly, bank erosion (island or floodplain at the earlier date) is assumed to include 3 m of overbank sands above the basal gravel layer. The area of bank erosion is multiplied by 3 m and compared to the measured volumetric change. In the example of cell $2,3 \mathrm{~m}$ times the eroded area of $15,337 \mathrm{~m}^{2}$ in the period 1952-84 exceeds the $3888 \mathrm{~m}^{3}$ measured volume, so all of the eroded volume is considered to be overbank sand. The remainder (in this case 0) would be considered to be channel sand and gravel (the value 0 is entered at erosion, sub 3 m). Bank deposition is computed in a similar manner, except that only the top 0.84 metres of sediment is overbank sand. In this example, the product of 0.84 and the depositional area of $464 \mathrm{~m}^{2}$ is less than the total measured volume, so there is $390 \mathrm{~m}^{3}$ of overbank sand and $709 \mathrm{~m}^{3}$ of bed material sand and gravel: the value 709 is entered at deposition sub 0.84m. Bank total represents the difference between erosion and deposition of bed material in the banks. This total is divided into bank gravel and bank sand using the same gravel fraction as in the bed. These values are also included in the total sand+gravel column at the end of the table.

The total volume change of overbank sand $\left(390 \mathrm{~m}^{3}-3888 \mathrm{~m}^{3}\right)$ is then multiplied by 0.3 to estimate the fraction that is coarser than 0.177 mm (the fraction is defined from analyzed samples of overbank sands obtained from along the river, but not necessarily from cell 2). This value (-1050 m^{3}) is entered as O / B sand >0.177 and is also included in the total sand + gravel column. The remaining $2449 \mathbf{m}^{3}$ of fine overbank sands is considered wash material and is discarded from sediment budget calculations. In cells where there has been significant bank erosion and deposition over time, this elimination of wash material represents a considerable adjustment which means that the bed-level changes computed from the sediment budget and based on bed material change (Tables B5-7) are systematically different than the unadjusted bed level changes reported in Table B-9.

The final major section of the sediment budget tables summarizes transitions 4 and 5, vegetation stripping and recovery. In this example, there was no measured stripping of sand (top 3 m of surface) or gravel (volume below 3 m). The recovery volume was measured as $1261 \mathrm{~m}^{3}$ and the recovery area was $1403 \mathrm{~m}^{2}$. Since only the top 0.84 metres is considered O/B sands, this material is subdivided into $1179 \mathrm{~m}^{3}$ of O / B sands and the remaining $82 \mathrm{~m}^{3}$ is considered bed material (recovery sub 0.84 m). The bed material volume is subdived into sand and gravel using the percentage of gravel in the bed and banks. These volumes are found in the gravel and sand columns and are included in total sand+gravel. The overbank sand volume is again multiplied by 0.3 to estimate the coarse sand fraction. This value $\left(354 \mathrm{~m}^{3}\right)$ is enterd into the O / B sand >0.177 mm column. The remaining $825 \mathrm{~m}^{3}$ is also considered wash material and is not introduced into the bed material budget.

The sediment budget also includes a column for overbank sands on stable island and floodplain surfaces (stable fldpln total sand). These volumes summarize transition 6 but are not included in sediment budget calculations. The volumes are simply presented as a reflection of measurement errors as volumetric changes are expected to have been minimal on these surfaces (though strictly speaking, some wash material may be deposited or removed). The errors are greatest along the floodplain (areas outside the main channel banks) where the data are less dense and are maximum at the margins of the survey data where the topographic modeling is subject to interpolation errors, as we would expect.

The final term required for the sediment budget is the volume of gravel removed from each reach by dredging or mining activities $\left(\mathrm{V}_{\mathrm{d}}\right)$. These volumes are included as a positive term in the budget (i.e. they are added to each reach as a depositional volume) as it is assumed that this volume represents material that would have remained in each reach had it not been removed. Weatherly and Church (1999) found that an average of $130,000 \mathrm{~m}^{3}$ has been removed from the gravel reach between 1964 and 1998 at a variety of different sites, although the records are incomplete prior to 1974 (when the industry became regulated). It is not possible to provide an accurate estimate of earlier removals, though total amounts were probably small except during 1949-52 (approximately) when river gravels were used to repair and upgrade channel dykes. The incomplete knowledge of gravel removal volumes represents a negative bias in the sediment budget (meaning transport estimates represent a minimum) although the magnitude of this bias remains unknown. Gravel removals are incorporated into the sediment budget by plotting the
locations of individual documented removals on the base map to determine the affected reach in each case.

These quantities are recorded in the sediment budget tables under gravel removals and sand removals. As there were no known removals in computing cell 2 , a value of 0 is entered in both columns.

The summary of all gravel and coarse sand volumetric changes in given in the columns gravel sum, sand sum and total sand+gravel. The gravel sum includes gravel eroded or deposited within the bed (transition 1), channel banks (transitions 2 and 3) and associated with vegetation stripping and recovery (transitions 4 and 5), as well as gravel removed by mining. The sand sum includes the sand fraction associated with the gravel erosion and deposition (all transitions) as well as the coarse fraction of overbank sands asociated with bank erosion and deposition (transitions 2 and 3) and vegetation stripping and recovery (transition 4 and 5). Sand volumes removed by mining are also included. The bed-level changes are subsequently calculated as the total sand and gravel volume change calculated for each cell, divided by the active channel area of the cell (cell width x length).

As reported earlier, the sediment budget total (-248 $434 \mathrm{~m}^{3}$) compares very well with the direct survey difference total $\left(-248206 \mathrm{~m}^{3}\right)$ because most of the material exchange occurs within the channel bed (transition 1) and only a small fraction is 'lost' as overbank wash material. In this example, the $2449+825 \mathrm{~m}^{3}$ of wash material excluded from final calculations occurs entirely within stable floodplain surfaces and so was not included in the direct survey calculation. In addition, an equivalent volume of coarse sand was eroded outside the channel bed (transitions 25) as was deposited so no bias is introduced as a result of the assumed 3 m overbank sand erosion thickess or 0.84 m sand deposition thickness.

B.3.2 Complex cell

We now review a case in which the reported bed-level changes are very large. A suitable computing cell for this comparison is Cell 33 where the gross sediment budget shows an apparent bed-level change of +9 cm (aggradation), compared to the direct (unadjusted) survey comparison which shows a change of -70 cm (degradation) between 1952 and 1984. There have been historic sand and gravel removals from this reach, however, which are included in the sediment budget results as a depositional term. If this volume is removed from the sediment budget calculations, there was an apparent bed change of -5 cm , still much smaller than the direct survey comparison.

Net volumetric changes for all periods in cell 33 are given in Table B-3 (in this table, gravel and sand removals have been included in the sediment budget figures in order to make the change "equivalent" to that detected from the unadjusted survey). The raw data values that are used in the sediment budget calculations are given in the Table B-4. As before, the highlighted figures, constituting the unadjusted survey differences (Table B-9) and the unprocessed data for the sediment budget, are equivalent to within roundoff error associated with the different calculations used to construct them and to different masking areas.

Table B-3. Volume and bed level changes in cell 33. Negative values indicate degradation (erosion volume exceeds deposition volume).

Period	$1952-84$	$1984-99$	$1952-99$
unadjusted volume $\left(\mathrm{m}^{3}\right.$ bulk measure) - Table B-9	$\mathbf{- 7 7 4 , 4 4 2}$	$\mathbf{2 5 7 , 5 5 4}$	$\mathbf{- 5 1 6 , 0 4 0}$
unadjusted bed level change (m)	-0.70	0.23	-0.47
sediment budget $\left(\mathrm{m}^{3}\right.$ bulk measure) - Tables B5-7	$-102,368$	298,668	103,187
bed material level change (m)	-0.09	0.27	0.09

The large discrepancy between the sediment budget figures (that is, $-102368 \mathrm{~m}^{3}$ in 195284) compared with the direct survey ($-774442 \mathrm{~m}^{3}$) can be attributed to the treatment of the overbank wash material. In this example, there was a net loss of $604137 \mathrm{~m}^{3}$ of wash material associated with bank changes, and a further loss of $2659 \mathrm{~m}^{3}$ of wash material asociated with vegetation and recovery processes that was ignored in the sediment budget calculations. If this total ($606796 \mathrm{~m}^{3}$) had been included, the figure reported in Table B-5 would be $-709164 \mathrm{~m}^{3}$, or -787 $529 \mathrm{~m}^{3}$ if the degradation on stable island/bar surfaces is considered (which would largely account for the slightly different no-data regions used).

Table B-4. Volume changes (m^{3} bulk measure) in cell 33 by transition type

Transition	1	2	3	4	5	6	Total volume
$1952-84$	216,334	$-986,290$	57,215	$-7,880$	11,457	$-78,365$	$\mathbf{- 7 8 7 , 5 2 9}$
$1984-99$	315,408	$-44,615$	10,143	$-13,899$	$-7,428$	$-34,090$	$\mathbf{2 2 5 , 5 1 8}$
$1952-99$	422,775	$-740,827$	143,473	$-357,358$	33,339	$-64,586$	$\mathbf{- 5 6 3 , 1 8 4}$

B.3.3 Summary difference

Between Mission and Agassiz during the period 1952-84, the total volume of wash material eliminated from bank changes was 8.04 million m^{3} (erosional volume). This volume is in fact
negative for all computing periods and reflects the observation that bank erosion volumes consistently exceed bank deposition volumes. The total volume of wash material eliminated from the bed material budget due to vegetation stripping and recovery changes was 0.57 million m^{3} (depositional volume). Since these wash material losses are included in the unadjusted survey difference comparison (Table B-9) the unadjusted bed-level changes are smaller or more negative for most computing cells.

There remains the question which is the more appropriate set of figures to use to establish trends of bed level change along the river. The overbank changes are large, and tend to decrease apparent aggradation if included (since they are mainly degradational), but they should not have any material impact on raising the level of the channel bed since these sediments are found on island and floodplain surfaces above the normal channel zone. Their removal should increase the channel conveyance in the very highest floods (those that wash over the floodplain and island surfaces). It appears most prudent to adopt the unadjusted results (direct survey) for differences in channel bed elevation for examining potentially significant changes within the channel.

It remains to ask why those numbers do not even sum from survey to survey. The reason for this is the changing mask that is used from survey to survey in the sediment budget calculations. This adjusts the marginal areas where most overbank sediment adjustments occur, so that overbank sediments are not considered on the basis of equivalent areas from survey to survey. The directly differenced 1952-99 volumes and elevation changes, then, do not equal the sum of the component intersurvey changes.

Table B-5. Sediment budget - 1952 to 1984

Cell	river km	$\underset{\substack{\text { lengh } \\ \text { (m) }}}{\text { a }}$	${ }_{\text {w }}^{\text {widh }}$ (m)	channel change	$$	$\frac{\text { nges (deposi }}{\text { channel }}$ gravel	$\begin{aligned} & \text { tion) } \begin{array}{c} \text { channel } \\ \text { sanad } \end{array} \end{aligned}$	$\begin{gathered} \text { erosion } \\ \text { (sub } 3 \mathrm{~m} \text {) } \\ \hline \end{gathered}$	bank change (sub 0.84 m)	bank toal	$\begin{aligned} & \text { bank } \\ & \text { gravel } \end{aligned}$	bank sand	$\begin{array}{\|c\|} \hline \text { O/B sand } \\ (>0.177 \mathrm{~mm}) \end{array}$	$\begin{gathered} \text { Stripping } \\ \text { sub } 3 m) \end{gathered}$		$\frac{\text { oing and reco }}{\text { gravel }}$	sand		$\begin{array}{\|c\|} \hline \text { stable fldpln } \\ \text { total sand } \\ \hline \end{array}$	\pmgravel removal	sand removal	${ }_{\text {ctavel sum }}^{\text {(m3) }}$	$\underset{\substack{\text { sand sum } \\ \text { (m3) }}}{\text { a }}$		cell
1	85.5	820	560	-100,534	95	-5,027	-95,507	0	32	32	2	30	- 474	0	0	0	0	0	- 16346	0	0	-5.025	-95,952	-100,977	
	86.3	1,000	500	-248,529	95	-12,426	-236,102	0	709	709	35	673	1,050	0	82	4	78	354	${ }^{81982}$		0	${ }^{-12,387}$	-236,047	-248,434	
	87.3	1,000	450	- $-175,697$	95	$-8,785$ 10	-166,912	0	0		0	0	${ }^{733}$	0	179	0	170	${ }^{31}$	382517 15133		0		- 166,1477	${ }^{-1740,932}$	
	${ }^{88.3}$	${ }^{950}$	400	200,598	95	10,030	${ }^{190,5688}$	0	1	0	0	${ }^{0}$	658	0	179	09	170	89	${ }^{451433}$	0	0	${ }^{10.039}$	${ }^{1914,485}$	201.524 13950	
	${ }^{89.3}$	990	640	${ }^{401,184}$	95	20.059	${ }^{381,125}$	${ }_{-}^{-252,736}$	21,408	${ }^{-231,328}$	${ }^{-11,566}$	-219,762	${ }^{-52.962}$	0	${ }^{19,748}$	${ }_{98} 98$	$\stackrel{18,760}{100}$	$\begin{array}{r}3.109 \\ \hline 261\end{array}$	${ }^{195958}$		0	9,480 1.3783	${ }^{1330,270}$	${ }_{\text {139,750 }}^{13,53}$	
	90.3	1,000	${ }^{750}$	360,947	95	18,047	342,900	-85,891	401	${ }^{-85,490}$	-4,274	${ }^{-81,215}$	-46,266	0	200	10	190	261	-143377	0	0	${ }^{13,783}$	${ }^{215,870}$	${ }^{229,653}$	
	${ }^{91.3}$	1.000	${ }_{7}^{750}$	${ }^{2999529}$	80	59,906	${ }^{239,623}$	0	0	0	0	0	-13.523	0	0	0	0	0	- 73944 .11752	0	0		${ }^{226,100}$	${ }^{286,006}$	
8	92.3	1.150	730	${ }^{362,126}$	80	72.425	289,700	0	0	06	5	0	-20.822	0	0	0	0	0	${ }^{-117652}$	0	0	72,425	${ }^{268,879}$	${ }^{341,304}$	
-	${ }^{93.4}$	1.000	${ }^{660}$	-514,343	80	- 102.8696	${ }^{-411.474}$	-265	0	-265	- -235	-212	-25.085	0	0	0	0	0	$\begin{array}{r}\text { - } 878721 \\ \hline-8850 \\ \hline\end{array}$	0	0	$\begin{array}{r}-102092 \\ -152786 \\ \hline\end{array}$	${ }_{- \text {- }}^{\text {- } 36.7771}$	- $-.430,692$	
10	94.4.	1.090	${ }^{750}$	- 375 , 085	60	- 150.034	-225,051	-6.879	0	${ }_{\text {- } 6.879}$	${ }^{2.752}$	${ }_{-4,128}$	-38,578	0	0	0	0	-149	- 888750 2887	0	0	$-152,786$ -30038 -1	${ }^{-267,905}$	-420,691	
11 12	${ }^{95.5}$	1,070 1,000	$\frac{1,090}{670}$	${ }_{-281,009}^{12687}$	${ }^{60}$	- ${ }_{\text {-1,204 }}$	- $\begin{array}{r}\text { 76.806 } \\ -10447 \\ \hline\end{array}$	- $-52,915$	0	-52,915	- $\begin{array}{r}-21,166 \\ -26,307\end{array}$	$\begin{array}{r}-31,749 \\ -17,538 \\ \hline\end{array}$	$-25,036$ $-47,817$	\bigcirc	0	0	0	${ }^{1}{ }_{2}^{1,593}$	26887 .46176 .	0	0	- $\begin{array}{r}\text { 30,038 } \\ -183,127\end{array}$	${ }_{-21.614}^{-16.424}$	- ${ }_{\text {- } 31.652951}$	
13	97.6	1.030	680	-513,685	30	-359,579	-154,105	0	0	0	0	0	291	0	94.199	65.939	28.260	92,819	19020		0	-293,640	${ }^{-32,736}$	${ }^{-326,376}$	
14	98.6	1.000	600	668,194	30	467,736	200,458	-79,570	15,881	-63,688	-44,582	-19,107	-43,895	0	1.027	719	308	3,264	324611	0	0	${ }^{423,873}$	141,029	564,901	14
15	99.6	1.000	960	783,569	30	${ }^{548,498}$	${ }^{235,071}$	-296,759	4.835	-291,923	$-204,346$	-87,577	-88,496	0	0	0	0	0	38580		800	${ }^{344,152}$	59,797	${ }^{403,949}$	
16	100.6	1,000	1,270	260,992	30	${ }^{182,694}$	78,298	-49,205	0	-49,205	-34,444	-14,762	-55,087	0	0	0	0	4.599	. 78922	0	0	148,251	3,850	152,101	
${ }^{17}$	101.6	${ }_{1}^{1.030}$	${ }_{1}^{1,220}$	${ }^{330,118}$	30	${ }^{231,083}$	9,0,035 2702	-63,669	0	-63,669	-44,568	-19,101	-111,532	0	35	25	1	31	${ }^{-32128}$	0	0	${ }^{186,539}$	${ }^{-31,556}$	154,983	
18	1027	1.100	1,220	902,639	30	${ }^{631,848}$	270,792	-286,261	0	-286,261	$-200,383$	-85,878	-133,401	0	0	0	0	0	. 75759	0	0	431,465	${ }^{51,513}$	482,978	18
19	103.8	1,260	1,160	-80,800	30	${ }^{-56,560}$	$\stackrel{-24,240}{ }$	$-47,390$	${ }^{15,221}$	-32,170	-22,519	-9,651	${ }^{-132,185}$	0	${ }^{12,875}$	9.012	${ }^{3}, 862$	18,505	-38107	5.880	2.520	-64,186	-141, 188	$-205,374$	
20	105.0	1,250	1,320	-428,619	30	-300,033	-128,586	0	29,878	29,878	20,915	8.963	-107,467	0	15,896	11,127	4.769	35,430	19633		0	-267,991	-186,891	$-454,883$	
${ }^{21}$	106.3	1,020	1,440	-489,820	30	-342,874	-146,946	-424,686	,	$-424,686$	-297,281	$-127,406$	-160,053	${ }^{-8,863}$	0	6,204	2,659	48,807	12882	53,200	22,800	-593,158	-365,457	-958,615	
22	107.3	1,020	1,270	. 683,645	30	$-478,551$	$-205,093$	-126,687	0	-126,687	-88,681	-38,006	-128,066	0	-	0	0	-8,995	-33999	0	0	-567,232	-380,160	-947,392	
${ }^{23}$	108.3	1.030	1,220	${ }^{-32,258}$	30	${ }^{-22,580}$	$\stackrel{-9.677}{ }$	0	${ }^{130,883}$	1300883	91.618	39,265	-8,610	0	0	0	0	9.526	${ }^{62370}$		0	69,037	${ }^{30.504}$	99,541	
24	109.3	1,040	1,390	786,657	30	550,660	235,997	$-23,062$	113,377	90,315	63,220	27,094	-108,207	0	${ }^{40.583}$	28,408	12,175	33,671	.51273	0	0	644,288	200,730	${ }^{843,019}$	
25	110.4	1.160	1,100	652,772	30	${ }^{456,940}$	${ }^{195,832}$	-16,201	0	-16,201	-11,341	-4,860	-31,088	0	12,641	8.849	${ }^{3,792}$	10,883	9399			${ }^{454,4488}$	174,559	${ }^{629.007}$	
26	111.5	1.010	990	439.874	30	307,912	131,962	0	151	151	106	45	-56,022	0	425	298	128	349	46980	0	0	308,315	76,462	384,777	
27 28	$\frac{112.5}{113.6}$	${ }^{1.020} 1.070$	${ }_{9}^{1.040}$	${ }^{-284,617} 104$	${ }_{30}^{30}$	${ }_{-199,232}^{-73,164}$	${ }_{\text {- }}^{-85.385}$	0	$\underset{16.431}{0}$	$\frac{0}{16,431}$	${ }^{11.502}$	$\stackrel{0}{4.929}$	${ }_{-1.386}^{16,146}$	0	${ }_{\text {4, }}^{4.612}$	${ }_{\text {312,29 }}^{38726}$	13,384 20883	16,799 24.493	191822 32883	$\frac{0}{457100}$	$\stackrel{0}{19590}$	-168.003	${ }^{-53,816}$	$-221,820$ -851007	${ }^{28}$
29	114.6	1,020	730	${ }^{246,242}$	30	${ }^{151,369}$	${ }^{\text {64, } 872} \mathbf{3}$		10,956	13,956	${ }_{9,769}^{11.59}$	4,187	${ }_{5}^{16.583}$	0	${ }^{69,692}$	${ }^{48,726}$	${ }^{20.587}$	${ }_{3}^{24,8,822}$	${ }^{326883}$		195,900 162,48	560,402		${ }_{844,125}$	
30	115.6	1.020	1.040	716,395	30	501,477	214,919	0	${ }_{17,320}$	17,320	12.124	5.196	-14,688	0	104,875	${ }^{73,413}$	${ }^{31,463}$	${ }^{22,210}$	209817	32.200	${ }^{13.800}$	619.214	272,899	${ }^{892.113}$	
31	116.7	1.220	${ }^{830}$	-189,112	30	$-132,378$	-56,734	-107,594	${ }^{17,308}$	-48,285	-33,800	-14,486	-64,052	0	0	0	0	${ }^{10,847}$	${ }^{-75833}$	0	0	-166.178	-124.424	-290,602	
32	117.9	1.120	1,170	${ }^{173,546}$	30	121,482	52,064	- $-13,255$	0	-13,255	-9,278	${ }^{-3,976}$	-386,156	0	70,507	49,355	${ }^{21,152}$	34,237	-17498	0		161,559	$-282,680$	-121,122	
33	119.0	1.240	890	216,334	30	151,434	${ }^{64,900}$	-113,981	${ }^{47,959}$	-66,022	-46, 215	-19,807	-258,916	0	7,375	${ }_{5}^{5,163}$	2.213	-1,139	. 78365	107, 100	45,900	${ }^{217,481}$	-166,849	50,632	3
${ }^{34}$	${ }^{1220.2}$	1.020	590	36,853 3,590	30	25,797	${ }^{11,056}$	0	107	107	75	32	${ }^{-22,921}$	0	50,040	35,028	15.012	9,690	$\begin{array}{r}13593 \\ \hline 10236 \\ \hline\end{array}$	107, 10	${ }^{45,900}$	${ }^{168,000}$	58,769	${ }^{226,769}$	
${ }_{36}^{35}$	${ }_{12123}^{1223}$	1,020 1.010	${ }_{1}^{700}$	${ }^{-345,990}$	${ }_{30}^{30}$	- $-242,193$	${ }_{-}^{-103,997}$	\bigcirc	0	$-182,773$	-127,941	-54,832	$.57,715$ $.48,23$	0	0	0	0	- 18.488	${ }^{10423639}$	0	0	$-370,134$ -191526	${ }^{-215,862}$	${ }_{-}^{-585,996}$	
37	123.3	1.060	1.240	-504,086	30	-.352.861	-.151,226	-94,723	-	-94,723	-66,306	-28,417	$\stackrel{-498,377}{ }$	0	0	0	0	${ }_{8,042}^{1,042}$	${ }_{30169}^{10169}$		0	-191.526 $-49,166$	${ }_{-}^{-369.978}$	- 780,144 .	
38	124.4	1,020	1.520	1,293,146	30	${ }^{\text {905,203 }}$	${ }^{387,944}$	-91,678	0	-91,678	-64,175	$-27,503$	-.35,132	0	0	0	0	7,908	${ }^{351280}$	${ }^{82,950}$	${ }^{35,550}$	${ }^{923,978}$	${ }^{50,767}$	974,745	
39	125.4	1.010	1.370	395,271	30	276,689	${ }^{118,581}$	0	${ }^{204,832}$	204,832	143,382	61,449	-119,268	0	152.594	106,816	45.778	108,802	${ }^{416288}$	136,850	58,650	663,737	273,993	${ }^{937,730}$	${ }^{39}$
40	126.4	1,020	${ }^{980}$	${ }_{\text {1,401,122 }}^{307202}$	${ }_{30}$	${ }^{\text {280,786 }}$	${ }^{420,337}$	0	108,252 38033			${ }^{32,476}$		0	0	0	0	16,933	${ }_{3}^{250877}$	2.660	1,140	${ }^{1.059,222}$	${ }^{387,039}$		
42	128.5	1.910	700	1,046,079	30	732,255	${ }^{311,324}$	-188,325	$\stackrel{\text { 30,030 }}{1,390}$	${ }_{-186,935}$	${ }^{-130,855}$	$\stackrel{\text { - } 56,081}{12,40}$	${ }_{\text {- }}$	0	21.859	15,301	6.558	4,936	${ }^{3194176}$	0	0	616,702	${ }^{\text {70,7880 }}$	6887,482	
43)	129.4	1.130	560	125,003	30	87,502	37,501	0	0	0	0	0	-57,924	0	0	0	0	2,485	81843	0	0	87,502	-17,939	69.564	43

Table B-6. Sediment budget - 1984 to 1999

Cell	river km	${ }_{\substack{\text { lengh } \\(\mathrm{m})}}^{\text {a }}$	$\underset{\substack{\text { width } \\(m)}}{\text { a }}$	channel change	$\begin{aligned} & \text { bed che } \\ & \text { sand } \end{aligned}$	$\frac{\text { ges } \text { depo }}{\text { channel }}$ channe	$\frac{\text { on) }}{\text { channel }}$	(${ }_{\text {erosion }}^{\text {ent } 3 \mathrm{~m})}$	$\underbrace{\text { deme }}_{\substack{\text { deposition } \\ \text { (sub } 0.84 \mathrm{~m})}}$	$\begin{aligned} & \hline \text { bank } \\ & \text { total } \\ & \hline \end{aligned}$	${ }_{\substack{\text { bank } \\ \text { gravel }}}$	bank sand	O/B sand $(>0.177 \mathrm{~mm})$	stripping (sub 3 m)		gravel	sand	O / B sand $(>0.177 \mathrm{~mm})$	$\begin{gathered} \text { stable fldpln } \\ \text { total sand } \end{gathered}$	gravel removal	sand removal	gravel sum (m3)	sand sum (m3)	$\begin{gathered} \text { total s+g } \\ (\mathrm{m} 3) \end{gathered}$	Cell
	85.5	820	560	-22	95	1,100	-20,9	0	0	0	0	0	21	0	0	0	0	0	37886	0	0	${ }^{-1,100}$	- 20,881	.21,981	
	86.3	1.000	500	48,034	95	2.422	46,013	0	0	0	0	0	412	0	0	0	0	0	69016	0	0	2,422	46.425	48,847	
	${ }^{87.3}$	1.000	450	29,274	95	1.464	27.811	0	0		0	0	443		0	0	0	- 6	87300	0	0	1.464	28,248	29,712	
	88.3	950	400	9,152	95	458	8.694	0	0	0	0	0	-244	0	0	0	0	0	.71420	0	0	458	8,451	8,908	
5	${ }^{89.3}$	-9900	640	${ }^{86,017}$	95	4,301	${ }^{81,776}$	0	0	0	0	0	${ }_{-1.261}$	0	0	0	0	${ }_{1.144}^{147}$	$\begin{array}{r}\text {-106127 } \\ -.0552 \\ \hline\end{array}$	0	0	4,301 10.206	${ }_{\text {81,599 }}{ }_{103673}$		
	${ }_{90.3}$	${ }_{1}^{1.000}$	750	${ }_{-124,984}$	80	$\stackrel{\text {-24,997 }}{ }$	$\stackrel{\text { - }}{\text { - } 99.9987}$	0	0	0	0	0	-1,97 1.19	0	0	0	0	14	$\begin{array}{r}\text { - } 75359 \\ \hline\end{array}$	0	0	$\stackrel{\text {-2,4,997 }}{ }$	-101,184	${ }_{-126,181}^{20,081}$	
	92.3	1.150	730	-289,179	80	-57,836	$-231,343$	0	0	0	0	0	${ }_{-1.669}$	0	0	0	0	0	-39111	0	0	-57,836	-233,012	-290,847	
	93.4	1,000	660	-135,699	80	-27,140	-08.560	0	301	301	60	${ }^{241}$	120	0	0	0	0	0	77195	0	0	-27,080	-108,439	-135,519	
10	94.4	1.090	750	- 363,972	60	-144,589	$-218,383$	0	0	0	0	0	247	0	0	0	0	266	6850	0	0	-145,589	-218,402	-363,991	
11	95.5	1.070	1.090	-550.419	60	-220,168	0,251	0	0	0	0	0	5,720	0	0	0	0	${ }_{733}$	${ }^{-4715}$	0	0	-220,168	-335,238	-55,406	${ }^{11}$
12	96.6	1.000	670	-293,271	40	-175,963	-117,309	0	0	0	0	0	-9,067	0	0	0	0	2,351	49001	0	0	-175,963	-124,024	-299,987	
$\stackrel{13}{14}$	${ }_{98.6}^{97.6}$	${ }_{1}^{1.030}$	${ }^{680}$	${ }_{-}^{-367,234}$	${ }^{30}$	$\stackrel{-257,063}{ }$	${ }_{\text {- }}^{\text {-1100.170 }}$	0	0	0	0	0	$\stackrel{-1.468}{-2.936}$	0	0	0	0	$\stackrel{2,735}{0}$	$\stackrel{250044}{ }$	0	0	$\stackrel{-257,063}{-467,736}$	${ }_{-}^{-108,903}$	${ }_{-}^{-6659,966}$	13 14
15	99.6	1.000	960	-1,204,732	30	${ }_{-843,313}$	-361,420	0	0	0	0	0	956	0	0	0	0	0	-15424	0	0	${ }^{844,313}$	-360,463	-1,203,776	15
16	100.6	1,000	1,270	-161,564	30	-113,095	${ }^{-48,469}$	348,458	0	-348,458	-243,920	-104,537	.80,715	0	0	0	0	0	-15522	0	0	${ }^{\text {-357,015 }}$	-233,721	-590,737	${ }^{16}$
17	${ }^{101.6}$	${ }_{1}^{1.030}$	1,240	-531.573	${ }^{30}$	-372,101	-159.472	-60,475	0	-60.475	${ }_{4}^{42,332}$	${ }^{18,142}$	${ }^{31}, 8820$	0	0	0	0	1,253	${ }^{-66325}$	0	0	-414.434	-210,688	-625,122	${ }_{18}^{17}$
$\begin{array}{r}18 \\ \hline 19 \\ \hline\end{array}$	102.7	1.100	1,220	- 4 [472.808	${ }_{30}^{30}$	306.466	131.342 162643	0	20,134	20,134 92724 1	14,094 64.907	$\underset{\substack{6,040 \\ 27817}}{\text { 6, }}$	9,454 34489	0	$\stackrel{0}{112.506}$	${ }_{88,755}$	${ }_{33,752}$	153 1658	$\begin{array}{r}\text { - } 108211 \\ \hline 100797 \\ \hline\end{array}$	$\stackrel{0}{3.400}$	${ }_{3.400}$	320.560 526.560	${ }^{146,990}$	${ }^{467,520}$	
20	105.0	1.250	1,320	258,259	30	180,781	77,478	0	12,304	12,304	8.613	3.691	7,030	0	0	0	0	${ }_{2,528}^{105}$	126498	0	0	189,394	${ }^{290,727}$	280,121	${ }^{20}$
${ }^{21}$	106.3	1.020	1.440	689,290	30	482,503	206,787	-91,006	19,403	-71,603	50,122	$-21,481$	-82,467	0	10,373	7.261	3,112	17,540	10914	23,750	23,75	463,392	112,161	575,553	${ }^{21}$
${ }^{22}$	107.3	1.020	1,270	631.570	30	442,099	189,471	-16,803	5,844	-10,959	-7,671	${ }^{-3,288}$	-21,691	0	0	0	0	${ }^{-1,273}$	${ }^{129872}$	0		${ }^{434,428}$	163,219	${ }^{597,647}$	
${ }^{23}$	108.3	1.030	1,220	158,074	30	110,652	47,422	0	3,287	3,287	2,301	986	5,719	0	17.547	12,283	5.264	13,214	${ }^{154885}$	0	0	${ }^{125,235}$	${ }^{72,605}$	${ }^{197,841}$	$\begin{array}{r}23 \\ 24 \\ \hline\end{array}$
24	1093	1.040	1,390	241,775	30	169,243	${ }^{\text {72,533 }}$	0	0	0	0	0	10,932	0	0		0	15,625	${ }^{115806}$	0	0	169,243	99,090	268,332	
${ }^{25}$	110.4	1.160	1,100	56,401	30	${ }^{39,480}$	16,920	0	0	0	0	0	-187	0	0	0	0	161	${ }^{36843}$	0	0	${ }^{39,480}$	16,894	${ }^{56,374}$	
26	111.5	1.010	990	-447, 120	30	-312,984	-134,136	0	0	0	0	0	-19,708	0	0	0	0	${ }^{33,79}$	27948	14,000	6,000	-298,984	-181,623	${ }^{-480,607}$	
${ }^{27}$	112.5	1.020	1.040	-28,473	30	-19,931	${ }^{-8,542}$	0	0	0	0	0	7.824	0	0	0	0	6,157	-8789	0	0	${ }^{-19,931}$	5,439	-14,492	
${ }^{28}$	113.6	1.070	${ }^{920}$	-108,179	30	-75,725	-32,454	0	0	0	0	0	26,728	0	0	0	0	6.802	19275	499,400	192,600	373,675	193,676	567,351	28
${ }^{29}$	114.6	1.020	730	-148,174	30	-103,722	-44,452	0	11,369	11,369	7,958	${ }^{3.411}$	${ }^{45,468}$	0	0	0	0	${ }^{39,858}$. 72517	204,085	87,465	108,321	131,749	${ }^{240,070}$	$\stackrel{29}{30}$
${ }_{31}^{31}$	${ }_{1156.7}^{1156}$	${ }_{1}^{1.220}$	1,040 830	${ }_{-1,471,532}$	${ }_{30}^{30}$	$\xrightarrow{-122,750}$	-525,607 4259	-39,021	${ }^{36,359} 1$		- ${ }_{\text {-1, }}^{8,264}$	$\begin{array}{r}\text {-799 } \\ \hline \text { 35,258 }\end{array}$	${ }_{\text {¢ }}^{41,672}$	\bigcirc	0	0	0	26,321 84.006	-78315 128670	0	0	- -124.614	${ }^{13,280} 5$	$\frac{-111,334}{1,650,738}$	
32	117.9	1.120	1,170	${ }_{881,837}$	30	617,286	264,551	0	0	0	0	0	3.512	0	0	0	0	11.776	23119	0	0	617,286	279,839	8997,124	${ }_{32}$
33	119.0	1.240	890	315,408	30	220,785	94,622	0	0	0	0	0	-10,342	0	0	0	0	-6,398	-34090	105,000	45,000	322,785	122,882	448,668	${ }^{33}$
${ }^{34}$	120.2	1.020	590	90,340	30	63,238	27,102	0	0	0	0	0	3,574	0	0	0	0		-38905	105,000	45,000	168,238	75,114	243,352	4
${ }^{35}$	${ }_{12123}^{1213}$	1.020	700	693,193	30	485,235	${ }^{207,958}$	-341.979	${ }^{40,393}$	-301,586	-211.110	-90,476	-58,502	0	46,616	32.631	13,985	10,890	-266647	0	0	${ }^{306,756}$	${ }^{83,855}$	390,611	[55
${ }_{37}$	${ }_{1223}^{123}$	${ }_{1}^{1,010}$	${ }_{1,190}^{1240}$	${ }^{\text {2124, } 250}$	${ }^{30}$	${ }^{148,929}$	${ }^{63,827}$		12,360	12,360	${ }^{8,652}$	3,08	23,074 .11555	0	0	0	0	${ }_{\text {16,546 }}$	${ }_{-}^{-136145}$	0	0	157,580 646,975	267, 1045	${ }^{264,135}$	
38	124.4	1.020	1.520	260,841	30	182,589	78,252	$-26,535$	0	$-26,535$	$-18,575$. 7.961	${ }_{-83,763}$	0	0	0	0	${ }_{-46,438}$.62165	0	0	164,014	-59,910	104,104	
39	125.4	1.010	1.370	467,752	30	${ }^{327,426}$	140,326	是,469	0	-130.469	$-91,328$	-39,141	-67,089	0	0	0	0	776	191254	0	0	236,098	34,872	270,970	39
40	126.4	1.020	${ }^{980}$	101,701	30	71,191	${ }^{30,510}$	0	0	0	0	0	2,610	0	0	0	0	4,055	73985	30,891	13,239	102,082	42,305	144,387	40
41	127.4	1.090	800	366,506	30	256,554	109,952	0	18,005	18,005	12,603	5.401	2.102	0	0	0	0	1,885	${ }^{117490}$	0	0	269,158	119,340	388,998	${ }_{41}^{41}$
$\stackrel{42}{43}$	$\stackrel{128.5}{1294}$	$\stackrel{190}{1130}$	500	- $\begin{array}{r}-43,149 \\ -132050\end{array}$	${ }_{30}$	- $-30,204$	$\begin{array}{r}-12,945 \\ -39615 \\ \hline\end{array}$	0	216	216	151	65	2,133 .10 .561	0	0	0	0	-.9.538		0	0	-30,2044 -922.284 -1	$\stackrel{-20,50}{-50}$		43

	${ }_{86.5}^{88.5}$	${ }^{820}$	$\begin{array}{r}560 \\ 500 \\ \hline\end{array}$	211.5	${ }^{95}$	${ }^{10.577}$	${ }^{200,971}$
		${ }_{\text {1,000 }}^{1,000}$				${ }^{10,0,0}$	
	${ }^{88.3}$	950	450		95		
5	${ }_{89} 8$	990		647,982	95	32,399	
6	90.3	1,000	750	616,443	95	30,882	
	91.3		${ }^{750}$		${ }^{80}$		
	92.3		${ }^{730}$	98,039	${ }^{80}$	19,608	
	93,4	1.000	660	-660,880	${ }^{80}$	132	
	94.4	${ }_{1}^{1,090}$	1750	-747, 228	60	298,	
	95.5	1.070	1.090	-.344,298	${ }^{60}$		
	96.6	1,000	670	${ }^{-454,93}$	40	272,	
	97.6	1030	${ }_{6}^{680}$	-884,660	${ }_{30}$		
15	99.6	1.000	960	${ }_{-422,890}$	${ }_{30}$	$\stackrel{\text {-296,023 }}{ }$	867
					30		
	101.6	1.030	${ }^{1,240}$	-91,	${ }^{30}$	${ }^{163,735}$	
	1027	1,100	1,220	1,260,942	30	${ }^{882,66}$	
$\frac{19}{20}$	103.8	1.260	1,160	641,236	${ }^{30}$	${ }^{448,865}$	
		1.250	${ }^{1,320}$	-544,629	${ }^{30}$	${ }^{-3888,241}$	
	${ }^{106.3}$	1.020	1,440	153,433	${ }^{30}$	107,438	
	1073	${ }^{1.020} 1$	1,270	${ }^{-995,262}$	${ }^{30}$	-69,463	16700
$\frac{23}{24}$	109.3	${ }_{1}^{1.040}$	1.390	337,295	30	236,106	101,
	110.4	1.160	${ }_{1}^{1,100}$	${ }_{-455.984}^{\text {-61. }}$	${ }_{30}^{30}$	${ }_{-430,610}$	
	112.5	1,020	1.040	-509,062	30	S66,34	
	113.6	1.070		311.6		218,1	
	114.6	1,020	${ }^{730}$	163,540	${ }^{30}$	114,4	
	115.6	1,020	1,040	159,772	30	${ }^{111,840}$	
	116.7	1,220	${ }^{830}$	24,53	${ }^{30}$	17,189	
	117.9	1.120	1,17	37, 29			
	119.0	1.240	890	422,715		295,943	
${ }_{35}^{34}$	${ }^{120.2}$	${ }_{1}^{1.020}$	${ }^{5} 900$	${ }^{307,766}$	${ }_{30}^{30}$	${ }_{\text {145, } 436}$	${ }^{11,134} 6230$
${ }^{36}$		1,010	1.1		${ }^{30}$	-217,	
		1,060		849	30		
	124.4	1,020	1.520	1,137,869	30	${ }^{796,508}$	
	125.4	1,010	1,370	866,941	30	606,859	
	126.4	1.020	980	783,557	30	548,490	
	127.4	1.090	880	${ }^{261,622}$	${ }^{30}$	${ }_{\text {183,135 }}^{183}$	
	128.5	910	700	${ }^{338,282}$	${ }^{30}$	236,	
44	${ }^{130.5}$	${ }_{\text {1.130 }}^{1,180}$	${ }_{5}^{560}$	${ }^{-.939 .424}$	${ }^{30}$	${ }_{-253,397}^{-2732}$	
45	${ }^{1312.7}$		690	${ }_{-45,203}$	${ }_{30}$	${ }^{-31,642}$	
${ }_{5}^{56}$			1,300	${ }^{-482,396}$	30	${ }^{-337,677}$	
	133.9	1.460	, 650	913		406,63	
$\begin{array}{r} 48 \\ \hline \\ \hline \end{array}$	${ }^{135.4}$	1.070	1,650	1,305,994		914,19	
49	${ }_{1}^{1367.8}$	1,280 1.070	1.050 790	${ }^{\text {315,063 }}$	${ }_{30}^{30}$	- ${ }_{\text {220,544 }}^{\text {-37, } 165}$	
	138.8	1,000	620	-207,303	30	-145,112	-62,
	1408	1.000	- ${ }_{\text {1.040 }}^{180}$	${ }^{-781.575}$	${ }^{30}$	-597,	
			${ }^{80}$	- 21,535	30		
	14.9	1.190	900	-618,554	${ }^{30}$	- 332,988	
56	144.1	${ }_{1,110}$	${ }^{9} 880$	${ }^{-3249,942}$	${ }^{30}$	$\stackrel{\text {-244,999 }}{ }$	
5	145.2	1,360	770	-1,092,998	30	765.099	27.89
			820		30		
	147.6	1.800	820	-488,271	${ }^{30}$	341.789	481
	19.4	${ }_{1}^{1,100}$	810	-60.472	30	${ }_{4}^{42,331}$	
	150.5	+1,080	${ }_{4}^{670}$	59,711	30	$\begin{array}{r}41.803 \\ \hline 1.511\end{array}$	
		1,040	480	-19,	${ }^{30}$	${ }_{\text {- } 120.511}$	
	${ }_{1526}^{152.6}$	1.010	420	${ }_{-111}$	${ }_{30}$	$1.78,721$.78201	

$-.927,922$	983,383	55,391	38,774	10,617	$-741,825$
$-5.663,123$	$5,367,605$	$-295,518$	142,662	$-438,179$	$-3,244,609$

Table B-8. Sediment volume changes and bed level changes in individual subreaches between Agassiz and Mission - 1952-99 as sum of 1952-84 and 1984-99 budgets

Table B-9. Summary of bed level changes

	river km			Sediment budget $s+$ totals $(\mathrm{m} 3)$$1952-84 \mid$$1984-99 \mid$$1952-99$			bed level changes from sediment budget (m) 1952-84									$\begin{array}{ccc\|} \hline \text { unadjusted bed level changes }(\mathrm{m}) \\ \hline 1952-84 \mid & 1984-99 & 1952-99 \\ \hline \end{array}$			C
Cell		(m)	(m)				gross	net	gross \|	net	gross ${ }^{\text {d }}$	net							
1	85.5	820	560	-100,977	-21,981	210,935	-0.220	-0.220	-0.048	-0.048	0.459	0.459	-100,982	-22,846	-123,262	-0.220	-0.050		$\frac{1}{2}$
	86.3	1,000	500	-248,434	48,847	-206,728	-0.497	-0.497	0.098	0.098	-0.413	-0.413	-248,206	49,631	-199,846	-0.496	0.099	-0.400	
3	87.3	1,000	450	-174,932	29,712	-135,233	-0.389	-0.389	0.066	0.066	-0.301	-0.301	-169,949	32,125	-138,247	-0.378	0.071	-0.307	
4	88.3	950	400	201,524	8,908	214,574	0.530	0.530	0.023	0.023	0.565	0.565	205,223	9,628	214,765	0.540	0.025	0.565	4
	89.3	990	640	139,750		249,381	0.221		0.136	0.136			17,332	86,566			0.137	0.164	5
6	90.3	1,000	750	229,653	203,880	436,145	0.306	0.306	0.272	0.272	0.582	0.582	101,487	203,257	305,296	0.135	0.271	0.407	6
7	91.3	1,000	750	286,006	-126,181	171,322	0.381	0.381	-0.168	-0.168	0.228	0.228	239,210	-131,502	107,209	0.319	-0.175	0.143	7
8	92.3	1,150	730	341,304	-290,847	71,408	0.407	0.407	-0.346	-0.346	0.085	0.085	257,196	-278,019	-21,186	0.306	-0.331	-0.025	8
9	93.4	1,000	660	-539,692	-135,519	-682,320	-0.818	-0.818	-0.205	-0.205	-1.034	-1.034	-627,247	-122,440	-750,539	-0.950	-0.186	-1.137	9
10	94.4	1,090	750	-420,691	-363,991	-784,457	-0.515	-0.515	-0.445	-0.445	-0.960	-0.960	-514,339	-371,404	-887,294	-0.629	-0.454	-1.085	10
11	95.5	1,070	1,090	51,652	-555,406	-438,943	0.044	0.044	-0.476	-0.476	-0.376	-0.376	6,423	-555,117	-550,623	0.006	-0.476	-0.472	11
12	96.6	1,000	670	-329,551	-299,987	-607,731	-0.492	-0.492	-0.448	-0.448	-0.907	-0.907	-410,063	$-177,186$	-588,059	-0.612	-0.264	-0.878	12
13	97.6	1,030	680	-326,376	-365,966	-468,984	-0.466	-0.466	-0.523	-0.523	-0.670	-0.670	-109,601	-129,438	-239,962	-0.156	-0.185	-0.343	13
14	98.6	1,000	600	564,901	-671,130	-98,886	0.942	0.942	-1.119	-1.119	-0.165	-0.165	479,478	-686,196	-208,245	0.799	-1.144	-0.347	14
15	99.6	1,000	960	403,949	-1,203,776	-779,639	0.421	0.420	-1.254	-1.254	-0.812	-0.813	184,886	-1,208,731	-1,023,126	0.193	-1.259	-1.066	15
16	100.6	1,000	1,270	152,101	-590,737	-640,526	0.120	0.120	-0.465	-0.465	-0.504	-0.504	-12,636	-858,392	-871,675	-0.010	-0.676	-0.686	16
17	101.6	1,030	1,240	154,983	-625,122	-493,879	0.121	0.121	-0.489	-0.489	-0.387	-0.387	-135,705	-705,023	-841,638	-0.106	-0.552	-0.659	17
18	102.7	1,100	1,220	482,978	467,550	968,565	0.360	0.360	0.348	0.348	0.722	0.722	160,795	488,709	650,620	0.120	0.364	0.485	18
19	103.8	1,260	1,160	-205,374	805, 248	721,868	-0.141	-0.146	0.551	0.546	0.494	0.483	-488,358	1,021,551	534,755	-0.334	0.699	0.366	19
20	105.0	1,250	1,320	-454,883	280,121	-245,028	-0.276	-0.276	0.170	0.170	-0.149	-0.149	-610,742	411,773	-197,794	-0.370	0.250	-0.120	20
21	106.3	1,020	1,440	-958,615	575,553	-386,465	-0.653	-0.704	0.392	0.360	-0.263	-0.347	-1,369,817	376,211	-991,946	-0.933	0.256	-0.675	21
22	107.3	1,020	1,270	-947,392	597,647	-366,338	-0.731	-0.731	0.461	0.461	-0.283	-0.283	-1,286,141	633,499	-652,453	-0.993	0.489	-0.504	22
23	108.3	1,030	1,220	99,541	197,841	341,038	0.079	0.079	0.157	0.157	0.271	0.271	104,095	355,341	459,277	0.083	0.283	0.365	23
24	109.3	1,040	1,390	843,019	268,332	981,110	0.583	0.583	0.186	0.186	0.679	0.679	662,651	379,536	1,043,804	0.458	0.263	0.722	24
25	110.4	1,160	1,100	629,007	56,374	682,148	0.493	0.493	0.044	0.044	0.535	0.535	585,877	70,079	656,732	0.459	0.055	0.515	$\frac{25}{26}$
26	111.5	1,010	990	384,777	-480,607	-326,516	0.385	0.385	-0.481	-0.501	-0.327	-0.347	240,579	-627,957	-388,073	0.241	-0.628	-0.388	26
27	112.5	1,020	1,040	-221,820	-14,492	-284,715	-0.209	-0.209	-0.014	-0.014	-0.268	-0.268	-180,594	24,471	-155,358	-0.170	0.023	-0.146	27
28	113.6	1,070	920	851,907	567,351	1,364,876	0.865	0.202	0.576	-0.076	1.387	0.071	222,421	25,536	248,916	0.226	0.026	0.253	28
29	114.6	1,020	730	844,125	240,070	1,102,916	1.134	0.406	0.322	-0.069	1.481	0.362	425,933	175,917	602,769	0.572	0.236	0.810	29
30	115.6	1,020	1,040	892, 113 -29060	-111,334	713,745	0.841	0.798	-0.105	-0.105	0.673	0.629	872,268 -514872	51,984	924,983	0.822	0.049	0.872	30
31	116.7	1,220	830	-290,602	1,650,738	1,259,128	-0.287	-0.287	1.630	1.630	1.243	1.243	-514,872	2,058,537	1,545,543	-0.508	2.033	1.526	31
32	117.9	1,120	1,170	-121,122	897,124	459,786	-0.092	-0.092	0.685	0.685	0.351	0.351	-956,898	985,241	29,730	-0.730	0.752	0.023	$\frac{32}{33}$
33 34	119.0	$\frac{1,240}{1.020}$	890 590 9	50,632 226,769	448,668 243,552	406,187 410,558	0.046 0.377	$\stackrel{-0.093}{0.123}$	0.407 0.404	0.271 0.155	0.368 0.682	0.094 0.179	$\begin{array}{r}-774,442 \\ \hline 24,917\end{array}$	257,554 101,439	$\begin{array}{r}-516,040 \\ \hline 126,605\end{array}$	-0.702 0.041	0.233 0.169	$\begin{array}{r}-0.468 \\ \hline 0.210\end{array}$	$\frac{33}{34}$
34 35	1212.3	${ }_{1}^{1,020}$	790	--585,996	243,562		-0.321	${ }^{-0.821}$	0.547	0.547	-0.524	${ }_{-0.524}$	-875,244	281,358	-594,489	-1.226	0.139	-0.833	$\frac{34}{35}$
36	122.3	1,010	1,190	-320,374	264,735	-218,095	-0.267	-0.267	0.220	0.220	-0.181	-0.181	$-436,094$	363,877	-71,105	-0.363	0.303	-0.059	36
37	123.3	1,060	1,240	-789,144	916,020	-8,164	-0.600	-0.600	0.697	0.697	-0.006	-0.006	-1,256,236	1,005,861	-247,977	-0.956	0.765	-0.189	37
38	124.4	1,020	1.520	974,745	104,104	706,160	0.629	0.552	0.067	0.067	0.455	0.379		-170,009	-168,767	0.000	-0.110	-0.109	38
39	125.4	1,010	1,370	937,730	270,970	1,588,118	0.678	0.536	0.196	0.196	1.148	1.006	804,739	294,303	1,101,161	0.582	0.213	0.796	39
40	126.4	1,020	980	1,446,261	144,387	1,540,095	1.447	1.443	0.144	0.100	1.541	1.493	1,327,349	118,942	1,446,287	1.328	0.119	1.447	40
41	127.4	1,090	800	208,412	388,498	463,935	0.239	0.239	0.446	0.446	0.532	0.532	-141,212	414,296	273,621	-0.162	0.475	0.314	41
42	128.5	910	700	687,482	-50,554	495,108	1.079	1.079	-0.079	-0.079	0.777	0.777	242,224	-51,493	191,446	0.380	-0.081	0.301	42
43	129.4	1,130	560	69,564	-143,033	-100,581	0.110	0.110	-0.226	-0.226	-0.159	-0.159	-9,553	-167,133	-177,065	-0.015	-0.264	-0.280	43
44	130.5		520			-87,575					-0.144	-0.470			-273,294			-0.445	$\frac{44}{45}$
45	1332.9	1,220 1,020	$\begin{array}{r}690 \\ 1,300 \\ \hline\end{array}$			$-373,473$ $-49,416$					-0.444 -0.037	-0.848			$-1,197,032$ 62,930			$\begin{array}{r}-1.422 \\ 0.047 \\ \hline\end{array}$	$\frac{45}{46}$
47	133.9	1,460	1,140			-576,821					-0.347	${ }^{-0.347}$			-573,753			-0.345	47
48	135.4	1,070	1,650			2,107,807					1.194	1.105			1,964,607			1.113	48
49	136.5	1,280	1,050			1,218,775					0.907	0.867			1,240,039			0.923	49
50	137.8	1,070	790 620			163,794 $-117,906$					0.194	0.194			290,414 58113			0.344	50
51	138.8 139.8	1,000 1,000	$\begin{array}{r}620 \\ 1.040 \\ \hline\end{array}$			$-117,906$ $-750,788$					-0.190 -0.722	-0.190 -0.722			58,133 $-681,223$			0.094 -0.655	51
53	140.8	1,070	880			-919,357					-0.976	-0.976			-1,380,013			-1.466	53
54	141.9	1,190	900			-643,526					-0.601	-0.601			$\begin{array}{r}-702,185 \\ \hline 1635\end{array}$			-0.656	$\frac{54}{55}$
55	143.1	1,020 1,110	900 780			236,628 $-119,017$					0.258 -0.137	0.258 -0.137			316,235 -902			$\begin{array}{r}0.344 \\ \hline-0001 \\ \hline\end{array}$	55
57	145.2	${ }^{1,360}$	770			-1,140,219					-1.089	-1.089			-1,146,574			-1.095	57
58	146.6	1,020	820			-802,545					-0.960	-0.960			-1,064,131			-1.272	58
59	147.6	1,800	820			-862,194					-0.584	-0.584			-1,337,854			-0.906	59
60	149.4 150.5	1,100 1,080	810 670			206,730 57,553					0.232 0.080	0.232 0.080			$\begin{array}{r}294,549 \\ \hline-3,015 \\ \hline\end{array}$			0.331	60
62	${ }_{151.6}$	${ }_{1}^{1,040}$	480			-21,615					-0.083	-0.043			$-36,630$ $-3,06$			-0.073	$\frac{1}{62}$
63	152.6	1,010	420			202,669					0.478	0.478			210,538			0.496	63
64 65	153.6	1,160 1.430	440			$-102,629$ $-134,000$					-0.201 -0.0234	-0.201			- $\begin{array}{r}-14,952 \\ -14882\end{array}$			-0.175	64
																			65
R1-43		1,047	932	5,118,910	4,101,878	7,911,998	0.121	0.075	0.097	0.065	0.187		-4,063,858	4,014,332	-37,220	-0.096	0.095	-0.001	R1-43
R44-65		1,168 1	813			$\begin{array}{r}-2,508,115 \\ \hline .403883\end{array}$					-0.120	-0.156			-4,194,495			-0.195	R44-65
		1,088	892			5,403,883					0.086	0.021			-4,231,715			-0.067	Total

[^0]: 1. Construction of the sediment budget in Chapter 5 is based on $20 \times 20 \mathrm{~m}$ grid cells following modifications given in Ham and Church (2003). The following discussion is based on original calculations in Church et al. (2001) using somewhat larger grid cells. This difference may alter the magnitude of some error specifications but does not change the context of the text.
[^1]: 2. It should be noted that this coding is more complex than that presented in Chapter 5, but is fundamentally identical since floodplain stripping is equivalent to bank erosion and floodplain recovery is equivalent to bank deposition (i.e. the data are reduced in exactly the same manner). The extra codes are retained to remain faithful to the original presentation of this material.
