Higher-order statistics of the turbulent flow in a sparse Lodgepole Pine canopy

An accurate modeling of plant-atmosphere interactions relies on an appropriate implementation of canopy turbulence. In the roughness sublayer forests we encounter conditions that result in non-zero $3^{\text {rd }}$ order moments and hence strongly skewed probability density distributions.

Describing relationships and simplifications is complicated by the extreme range of canopy morphologies. Interestingly, most studies done so far (field, wind-tunnel, and flume experiments, but also numerical simulations) focussed on dense canopies. Less information has been published on sparse canopies even though they form a significant part of the global land surfaces - in particular in the boreal zone. Are any previously reported findings for high-er-order moments applicable in sparse canopies?

Experimental set-up.

This question has been addressed in a recent field experiment in a sparse Lodgepole Pine stand in Cen tral British Columbia, Canada. Data was sampled using a vertical array of ultrasonic anemometers at the 'Kennedy Siding' tower ($55^{\circ} 06^{\prime} 43^{\prime \prime} \mathrm{N}, 122^{\circ} 50^{\prime}$ $23^{\prime \prime}$ W). Eight Campbell Scientific CSAT-3 ultrasonic anemometers were simultaneously operated at 10 Hz at different heights $(z / h=0.16,0.44,0.68,0.87,1.06$, 1.25, 1.56, and 1.96) over one month in August / September 2007. The stand surrounding the tower has a mean canopy height of $h=16 \mathrm{~m}$, a low canopy cover of only 24.3%, and a leaf area index of 1.38 . The site is located in flat terrain and the fetch in all wind directions extends to at least 1 km .

Wind profile and Reynolds stress - In agreement with observations in denser forests, the wind profile is characterized by a distinct inflection point in the upper canopy (left). Reynolds stress
u'w $^{\prime}$ ' does not decrease as effectively as within dense forests - and remains a significant term in the upper third of the canopy (right).

Roughness sublayer relationships determined in the wind tunnel by Raupach (1981 , black lines) agree reasonable with the data observed in this sparse canopy. Most critical is the trunk space region where low velocities and - likely higher order moments (se below) - affect the relationship between M_{3} and M
$3^{\text {rd }}$ order moments and the sweep-ejection cycle. To refine the analysis of the transport of momentum, quadrant analysis is used to separate the total flux into four stress fractions, most importantly the transport of momentum deficit upwards $S_{i 2}$ (ejections) and momentum excess downwards $S_{i 4}$ (sweeps). The difference between those is expessed by $\Delta S_{o}=S_{i, 4}-S_{i, 2}$, a parameter which theoretically includes all moments up to infinity, but except in the middle trunk space (z/h $=0.44$) a 'cut-off' at moments of order 3 allows a reasonable approximation.

Are $3^{\text {rd }}$ order moments sufficient to appropriately describe ΔS in this sparse canopy? A $3^{\text {rd }}$ order Cumulant Expansion (CEM, Na kagawa and Nezu, 1977) is a stringent test that clearly supports this assumption except at $z / h=0.44$. The simpler, incomplete CEM (ICEM, Katul et al., 1997) shows a systematic overestimation in the whole vertical domain.

The role of $3^{\text {rd }}$ order moments in the TKE budget. In the roughness sublayer, $3^{\text {rd }}$ order moments play a crucial role in the budget of turbulent kinetic energy (TKE). The turbulent transport term - described by the vertical divergence of $\overline{u_{i}^{\prime} u_{i}^{\prime} w^{\prime} \text { - is a significant transport }}$ process controlling local turbulence in the canopy.

Turbulent transport of TKE - With the exception of the topmost measurement level, TKE is transported downward (left). The divergence of the vertical flux densities of TKE (right) indicates that excess turbulence from canopy top and above ($z / h>0.8$) is ex ported to the canopy and trunk space (z/h<0.8).

$\frac{0.0}{10.0}$

The importance of the turbulent transport term - The following figure illustrates the importance of the various terms in the TK budget that create, relocate and destroy TKE. Turbulent transport space and is a significant sink above.

Acknowledgements.
The field experiment was funded through NSERC DG \#342029-07 (Christen) and NSERC RTI \#344541-07 (Christen). The long-term infrastructure tower is funded (Christen). The long-term infrastructure tower is funded
through CFCAS (T. A. Black, UBC). We thank Andrew through CFCAS (T. A. Black, UBC). We thank Andrew
Sauter, Rick Ketler, Zoran Nesic and Jonathan Bau for Sauter, Rick Ketler, Zoran ines lab and the field.

