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Paw U et al. (1992)

Land-surface temperatures 
are coupled with overlaying turbulent atmosphere

Surface temperature

Air temperatures
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Paw U, K., Qiu, J., Sun, H., Watanabe, T., & Brunet, Y. (1995). Surface renewal analysis: a new method to 
obtain scalar fluxes. Agricultural and Forest Meteorology, 74(1-2), 119–137.

Atmosphere

Heated land surface

Surface temperature
trace

Land-surface temperatures 
respond to coherent structures in the atmosphere
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t = 2

t = 3The temporal-spatial field of 
surface temperature fluctuations 
can be recorded using ground- or 
tower-based thermal cameras 
that are operated at relatively high 
frequency resulting in time-
sequential thermography (TST)

TST returns surface temperatures 
T (more precisely: brightness 
temperatures) as a function of 
space (x1,x2) and time (t)

Time-sequential thermography
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The spatio-temporal field of measured 
apparent surface temperatures of each 
pixel can then be decomposed into a high-
frequency fluctuating and a long-term 
mean (drifting) part.

TTime-sequential thermography
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T 0(t)

T

The spatio-temporal field of measured 
apparent surface temperatures of each 
pixel can then be decomposed into a high-
frequency fluctuating and a long-term 
mean (drifting) part.

Time-sequential thermography

We will only look at T’ (fluctuations) in the 
following examples.
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Thermal infrared camera 
at 2 Hz

Field of view

Ambient wind direction



St. Chrischona Tower 2007 / Roland Vogt, University of Basel, Switzerland 48 x time lapse

warmer

cooler

Surface temperature 
fluctuation (relative)Time-sequential thermography

than pixel 
average 
temperature
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Complex urban surface, Berlin, Germany, 2006

Thermal infrared camera 
(operated at 2 Hz)

Proof of concept
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Magnitude of surface temperature fluctuations are
controlled by surface material

Christen A., Meier, F. Scherer D. ‘High-frequency fluctuations of surface temperatures in an 
urban environment’, Theoretical and Applied Climatology (to appear, 2011)
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Energy of surface temperature fluctuations 
correlates with thermal admittance
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Thermal admittance (J m-2 s-1/2 K-1)
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(Trees) Metal

(Roofs)

Wood
(Trees)

Tar
(Roofs)

Tiles
(Roofs)

Stone (Walls)
Gravel (Roofs)

Brick
(Walls)

Asphalt (Roads)

Christen A., Meier, F. Scherer D. ‘High-frequency fluctuations of surface temperatures in an 
urban environment’, Theoretical and Applied Climatology (to appear, 2011)
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COSMO Array
Tokyo Institute of  Technology, Japan, 2009

Thermal infrared
camera 

Uniform material (ground, walls, roofs)

F. Meier et al. (2011)
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Magnitude of surface temperature fluctuations are
also controlled by surface form

F. Meier,, J. Richters, D. Scherer, A. Inagaki, M. Kanda, A. Hagishima (2011): ‘Outdoor 
scale model experiment to evaluate the spatio-temporal variability of urban surface 
temperature’, 28. Jahrestagung des AK Klima, Hamburg, 30. Oktober - 01. November 
2009,  Tagungsband p. 46.

weak fluctuations strong fluctuations

Standard deviation of surface 
temperature fluctuations

Strongest fluctuations 
where laminar boundary 
layer is thin

Stronger fluctuations on 
exposed roofs

mean wind

K



Surface(temperature(fluctua-on

Styrofoam(panel

Thermal(camera
at(30(Hz

Styrofoam Concerte

Atsushi Inagaki
Tokyo Institute of Technology
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Critical thoughts about the use of TST of surface 
temperatures to infer atmospheric turbulence

- Images show effect of coherent flow structures on surface 
temperatures (heat exchange), not structures themselves.

- Represent effects of near-wall coherent structures 
(streaks, splats), not structures in the inertial sublayer.

- Surface material must be heated or cooled (e.g. by solar 
radiation). No pure mechanical turbulence possible.

- Thermal inertia restricts visible signal to long-lasting 
(large) structures.
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A.. Christen, J. A.,  Voogt (2010): 'Inferring turbulent exchange processes in an urban street 
canyon from high-frequency thermography', 19th Symposium on Boundary Layers and 
Turbulence, Keystone CO, USA.

Vancouver - Street Canyon ‘Channel Flow’



A.. Christen, J. A.,  Voogt (2010): 'Inferring turbulent exchange processes in an urban street 
canyon from high-frequency thermography', 19th Symposium on Boundary Layers and 
Turbulence, Keystone CO, USA.

Time-sequential 
thermography of 
fluctuations with 
wind vectors overlaid

Approximate 
visible field of view

13m

13m
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Determining elongation of coherent structure 
‘imprint’ from two-point statistics

spatial separation (m)

temporal lag (sec)
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Two-point correlations RTT  vs. separation 
At τ = 0
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Phase lag of two-point correlations of T’ 

Convecti
on velocit

y
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Simpler surfaces - How does size of coherent
structures scale with stability?

Over natural grass
At RIMAC field, University of 

California, San Diego

Over artificial turf
At athletics field of Torey Pines 

High School, San Diego
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Spatial scale of coherent structure increases 
with atmospheric instability

L = -2.33 m L = -5.66 m L = -16.84 m

A. Garai, J. Kleissl (2010): ‘Coupling between air and surface temperature in the atmospheric 
surface layer’ , 19th Symposium on Boundary Layers and Turbulence, Keystone CO, USA.

natural grass artificial turf artificial turf
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4
2 Sichtfeld*der*Strahlungsthermometer*zum*2.*
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Coherent structure ‘imprint’ recorded on a 
bare desert surface

R. Vogt, University of Basel, Switzerland.

July 29, 2009, Namib Desert

4
2 Sichtfeld*der*Strahlungsthermometer*zum*2.*Visible Time-sequential thermography
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Concluding remarks

- Current thermal imagery systems can resolve 
surface temperature fluctuations caused by 
coherent structures exchanging heat between land 
surfaces and atmosphere.

- TST works well for surfaces that have a low thermal 
admittance, and are heated (or cooled) substantially.

- Promising TST products include spatial length 
scales, convection velocities, and possibly turbulent 
flow field extraction.


