Context sensitive scaling of energy use simulations

From individual buildings to cities

Andreas Christen ⁽¹⁾ Michael van der Laan ^(1,2) Ron Kellett ⁽²⁾ Rory Tooke ⁽³⁾

⁽¹⁾ Department of Geography University of British Columbia

⁽²⁾ School of Architecture and Landscape Architecture University of British Columbia

> ⁽³⁾ Integrated Remote Sensing Studio Department of Forestry University of British Columbia

a place of mind

Energy use and emissions estimates for entire cities rely mostly on **inventory data**, which is typically only available at aggregate space and time scales.

At the building-scale, sophisticated building energy models (BEM) exist, but require detailed knowledge about the building and its environment. Very few inventories of energy demand are at the intermediate neighborhoodscale though this is where many development decisions are made, and information is required for atmospheric models.

This is in large part due to the difficulties in scaling and the effort needed to characterize **urban form.**

Factors influencing energy demand Potential for automated inputs

7 km long and 1 km wide LIDAR scan in Vancouver, Canada with about 11'000 individual buildings

Central business district mostly high rises

> Suburban mostly detached dwellings

Gridded lidar data products 3D morphometrty of buildings and trees at 1 x 1 m

Intersection of Knight and 49th in Vancouver (Goodwin and Coops, UBC, 2008)

What can we derive/inform from LiDAR that is important to building energy use?

Urban morphology Shading and sheltering

Building morphology Archetype and form

	LR V	olume M3 copito	•
	üpr	049	
Residential Detached (1900-1964)	626	166	
Residential Detached (1965-1990)	736	166	
Residential Detached (1991-2009)	663	166	
Residential Duplex	836	195	
Residential Multiplex	983	200	
Residential Rowhouse	1205	209	
Residential Lowrise/Midrise	2812	206	
Residential Midrise/Highrise	36693	223	
Mixed-use	1631	772	

Population distribution Hot water demand

Modelling 10'000s of buildings An archetype approach

Dalhousie Mixed-use Mid-rise

Apartment housing with exterior circulation above two stories of retail

Case # 33006-00

OCCUPIED STORIES 6 DWELLINGS 80	COMMERCIAL UNITS 26 APERTURE % of EXTERIOR WALL 0 % RATIO OF ENVELOPE TO CONDITIONED FLOOR 0.55

RESIDENTIAL FLOOR AREA 7730 m² COMMERCIAL FLOOR AREA INDUSTRIAL FLOOR AREA 7412 m²

elements db

Assumes archetypes are scalable and replicable

12 Archetypes chosen based an assumed correlation between building use, form, period of construction and energy performance

Computation time

 \cap

simulating 12 archetypes with 5 different building volumes 5 different shading factors 5 different population inputs

are

180 simulations in BEM

simulating 11'000 buildings individually

225

150

days

75

are

11'000 simulations in BEM with individual inputs

Same building archetype

Reference BEM run in unobstructed terrain

4 BEM runs with increasing obstruction

Fractional shading Rapid calculation of potential direct sunlight

Fractional shading calculated for for each building based on gridded LIDAR dataset

Fractional shading Impact on Energy Use Intensity (MJ m⁻³ year⁻¹)

Energy intensity (m⁻³) for space heating decreases with increasing volume

Building Energy Use

- Building energy demand has been scaled using a multiple linear regression model based on parameters derived from a limited number of generic runs in a BEM.
- Settings of the generic BEM runs were informed by form data extracted from LIDAR, and an archetype database that incorporates actual buildings and energy audits.
- Inputs to linear regression equation for each individual building were efficiently extracted from gridded LIDAR and land-use data.
- Approach enables data-products on city or neighborhood-scale, usable for urban planning, load forecasting, emission reduction and atmospheric models (emissions, anthropogenic heat flux).

